RNA Secondary Structure Prediction Based on Energy Models

Manato Akiyama, Kengo Sato

研究成果: Chapter

抄録

This chapter introduces the RNA secondary structure prediction based on the nearest neighbor energy model, which is one of the most popular architectures of modeling RNA secondary structure without pseudoknots. We discuss the parameterization and the parameter determination by experimental and machine learning-based approaches as well as an integrated approach that compensates each other’s shortcomings. Then, folding algorithms for the minimum free energy and the maximum expected accuracy using the dynamic programming technique are introduced. Finally, we compare the prediction accuracy of the method described so far with benchmark datasets.

本文言語English
ホスト出版物のタイトルMethods in Molecular Biology
出版社Humana Press Inc.
ページ89-105
ページ数17
DOI
出版ステータスPublished - 2023

出版物シリーズ

名前Methods in Molecular Biology
2586
ISSN(印刷版)1064-3745
ISSN(電子版)1940-6029

ASJC Scopus subject areas

  • 分子生物学
  • 遺伝学

フィンガープリント

「RNA Secondary Structure Prediction Based on Energy Models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル