Robot localization and mapping problem with bounded noise uncertainties

Hamzah Ahmad, Toru Namerikawa

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

This paper deals with H Filter based SLAM which is also known as minimax filter to estimate robot and landmarks location whose able to stand for non-gaussian noise characteristics. Based on our findings, by selecting appropriate γ and initial state covariance matrix in H Filter, the estimation results can show better performance in comparison to the Kalman Filter approach. From the analysis of convergence properties of H Filter, it is found that the filter is capable to provide a reliable estimation. Besides, from the simulation results, H Filter produces better outcome than the Kalman Filter in the nonlinear case estimation. These condition subsequently provides alternative estimation techniques with the capability to ensure and improve estimation in the robotic mapping problem especially in SLAM.

本文言語English
ホスト出版物のタイトルISIEA 2012 - 2012 IEEE Symposium on Industrial Electronics and Applications
ページ187-192
ページ数6
DOI
出版ステータスPublished - 2012 12月 1
イベント2012 IEEE Symposium on Industrial Electronics and Applications, ISIEA 2012 - Bandung, Indonesia
継続期間: 2012 9月 232012 9月 26

出版物シリーズ

名前ISIEA 2012 - 2012 IEEE Symposium on Industrial Electronics and Applications

Other

Other2012 IEEE Symposium on Industrial Electronics and Applications, ISIEA 2012
国/地域Indonesia
CityBandung
Period12/9/2312/9/26

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「Robot localization and mapping problem with bounded noise uncertainties」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル