抄録
Conventional unmanned helicopters are used to spray agricultural chemicals and take aerial photographs. In the near future, the aircrafts are expected to be used for a wide array of activities, such as rescuing and fire fighting. Then, an autonomous flight using several sensors typified by a global positioning system (GPS) is highly expected. In this paper, first, system identification experiments for a large-scale unmanned helicopter are carried out to obtain a numerical model of aircraft dynamics. The attitude error of the helicopter is compensated by a stability augmentation system that permits the experiments during the flight. System identification results are shown on the dynamics using the measured input and output data. Next, the position control systems based on the H∞ control theory is constructed by using the identified model. Finally, the position control experiments suggest that the proposed modeling and design approach is effective enough for practical applications.
本文言語 | English |
---|---|
ページ | 323-328 |
ページ数 | 6 |
出版ステータス | Published - 2001 12月 1 |
外部発表 | はい |
イベント | 27th Annual Conference of the IEEE Industrial Electronics Society IECON'2001 - Denver, CO, United States 継続期間: 2001 11月 29 → 2001 12月 2 |
Other
Other | 27th Annual Conference of the IEEE Industrial Electronics Society IECON'2001 |
---|---|
国/地域 | United States |
City | Denver, CO |
Period | 01/11/29 → 01/12/2 |
ASJC Scopus subject areas
- 制御およびシステム工学
- 電子工学および電気工学