Robust empirical Bayes small area estimation with density power divergence

研究成果: Article査読

2 被引用数 (Scopus)

抄録

A two-stage normal hierarchical model called the Fay-Herriot model and the empirical Bayes estimator are widely used to obtain indirect and model-based estimates of means in small areas. However, the performance of the empirical Bayes estimator can be poor when the assumed normal distribution is misspecified. This article presents a simple modification that makes use of density power divergence and proposes a new robust empirical Bayes small area estimator. The mean squared error and estimated mean squared error of the proposed estimator are derived based on the asymptotic properties of the robust estimator of the model parameters. We investigate the numerical performance of the proposed method through simulations and an application to survey data.

本文言語English
ページ(範囲)467-480
ページ数14
ジャーナルBiometrika
107
2
DOI
出版ステータスPublished - 2020 6月 1
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 数学 (全般)
  • 農業および生物科学(その他)
  • 農業および生物科学(全般)
  • 統計学、確率および不確実性
  • 応用数学

フィンガープリント

「Robust empirical Bayes small area estimation with density power divergence」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル