Robust force control via disturbance observer

Emre Sariyildiz, Kouhei Ohnishi

研究成果: Conference contribution

6 被引用数 (Scopus)

抄録

Disturbance observer (DOB), which is one of the key points of acceleration based motion control systems, guarantees robustness of a system by nominalizing real plant and suppressing external disturbances. Besides that, it can be used to estimate external forces/torques by identifying system uncertainties, and it is called as a reaction torque/force observer (RTOB/RFOB) in the literature. RTOB/RFOB has several superiorities over force sensors, and therefore, it has been widely used, specifically in the motion control area, in the last two decades. The main disadvantage of a RTOB/RFOB is that it is affected significantly by the identification of system uncertainties. However, there is no a clear report on the design constraints of RTOB/RFOB based force control systems. This paper shows that not only performance but also robustness and stability of a robust force control system are affected significantly by the identification errors in the design of RTOB/RFOB. A new design criterion which improves stability and performance of RTOB/RFOB based force control systems is proposed. RTOB/RFOB and force sensor based force control systems are compared and simulation results are given to show the validity of the proposed method.

本文言語English
ホスト出版物のタイトルProceedings, IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society
ページ6551-6556
ページ数6
DOI
出版ステータスPublished - 2013 12月 1
イベント39th Annual Conference of the IEEE Industrial Electronics Society, IECON 2013 - Vienna, Austria
継続期間: 2013 11月 102013 11月 14

出版物シリーズ

名前IECON Proceedings (Industrial Electronics Conference)

Other

Other39th Annual Conference of the IEEE Industrial Electronics Society, IECON 2013
国/地域Austria
CityVienna
Period13/11/1013/11/14

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「Robust force control via disturbance observer」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル