Robust Quantile Regression Under Unreliable Data

Yoshifumi Shoji, Masahiro Yukawa

研究成果: Conference contribution

抄録

This paper addresses the quantile regression task when some non-negligible portion of data are corrupted by accidental factors such as temporary sensor malfunctions. Here, the task is to find the empirical quantile of the “reliable” data with the “unreliable” ones excluded. For this task, we propose the MC-pinball loss which is the composition of the minimax concave (MC) penalty and the pinball loss. The simulation results show that the proposed approach yields reasonable estimates of the true quantile. A potential benefit of the proposed approach is also shown with respect to the parameter tuning.

本文言語English
ホスト出版物のタイトルAPSIPA ASC 2024 - Asia Pacific Signal and Information Processing Association Annual Summit and Conference 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9798350367331
DOI
出版ステータスPublished - 2024
イベント2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2024 - Macau, China
継続期間: 2024 12月 32024 12月 6

出版物シリーズ

名前APSIPA ASC 2024 - Asia Pacific Signal and Information Processing Association Annual Summit and Conference 2024

Conference

Conference2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2024
国/地域China
CityMacau
Period24/12/324/12/6

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • ハードウェアとアーキテクチャ
  • 信号処理

フィンガープリント

「Robust Quantile Regression Under Unreliable Data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル