Robust reduced-rank adaptive algorithm based on parallel subgradient projection and krylov subspace

Masahiro Yukawa, Rodrigo C. De Lamare, Isao Yamada

研究成果: Article査読

17 被引用数 (Scopus)

抄録

In this paper, we propose a novel reduced-rank adaptive filtering algorithm exploiting the Krylov subspace associated with estimates of certain statistics of input and output signals. We point out that, when the estimated statistics are erroneous (e.g., due to sudden changes of environments), the existing Krylov-subspace-based reduced-rank methods compute the point that minimizes a wrong mean-square error (MSE) in the subspace. The proposed algorithm exploits the set-theoretic adaptive filtering framework for tracking efficiently the optimal point in the sense of minimizing the true MSE in the subspace. Therefore, compared with the existing methods, the proposed algorithm is more suited to adaptive filtering applications. A convergence analysis of the algorithm is performed by extending the adaptive projected subgradient method (APSM). Numerical examples demonstrate that the proposed algorithm enjoys better tracking performance than the existing methods for system identification problems.

本文言語English
論文番号5164903
ページ(範囲)4660-4674
ページ数15
ジャーナルIEEE Transactions on Signal Processing
57
12
DOI
出版ステータスPublished - 2009 12月 1
外部発表はい

ASJC Scopus subject areas

  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Robust reduced-rank adaptive algorithm based on parallel subgradient projection and krylov subspace」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル