Role of purinergic receptor P2Y1 in spatiotemporal Ca 2+ dynamics in astrocytes

Eiji Shigetomi, Yukiho J. Hirayama, Kazuhiro Ikenaka, Kenji F. Tanaka, Schuichi Koizumi

研究成果: Article査読

32 被引用数 (Scopus)


Fine processes of astrocytes enwrap synapses and are well positioned to sense neuronal information via synaptic transmission. In rodents, astrocyte processes sense synaptic transmission via Gq-protein coupled receptors (GqPCR), including the P2Y1 receptor (P2Y1R), to generate Ca 2+ signals. Astrocytes display numerous spontaneous microdomain Ca 2+ signals; however, it is not clear whether such signals are due to local synaptic transmission and/or in what timeframe astrocytes sense local synaptic transmission. To ask whether GqPCRs mediate microdomain Ca 2+ signals, we engineered mice (both sexes) to specifically overexpress P2Y1Rs in astrocytes, and we visualized Ca 2+ signals via a genetically encoded Ca 2+ indicator, GCaMP6f, in astrocytes from adult mice. Astrocytes overexpressing P2Y1Rs showed significantly larger Ca 2+ signals in response to exogenously applied ligand and to repetitive electrical stimulation of axons compared with controls. However, we found no evidence of increased microdomain Ca 2+ signals. Instead, Ca 2+ waves appeared and propagated to occupy areas that were up to 80-fold larger than microdomain Ca 2+ signals. These Ca 2+ waves accounted for only 2% of total Ca 2+ events, but they were 1.9-fold larger and 2.9-fold longer in duration than microdomain Ca 2+ signals at processes. Ca 2+ waves did not require action potentials for their generation and occurred in a probenecid-sensitive manner, indicating that the endogenous ligand for P2Y1R is elevated independently of synaptic transmission. Our data suggest that spontaneous microdomain Ca 2+ signals occur independently of P2Y1R activation and that astrocytes may not encode neuronal information in response to synaptic transmission at a point source of neurotransmitter release.

ジャーナルJournal of Neuroscience
出版ステータスPublished - 2018 2月 7

ASJC Scopus subject areas

  • 神経科学一般


「Role of purinergic receptor P2Y1 in spatiotemporal Ca 2+ dynamics in astrocytes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。