Search Wandering Score: Predicting Timings of Online Shopping based on Wandering in User's Web Search Queries

Kota Tsubouchi, Wataru Sasaki, Tadashi Okoshi, Jin Nakazawa

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Many researchers and companies have engaged in estimating users' interests so that an online shopping system can tell what he/she wants now. This paper tackles the next challenge in online shopping, i.e., predicting the times that users go shopping online. To predict the timing of online shopping, we focus on wandering behavior in web search activities and propose a search wandering score (SWS). Online shopping behavior can be categorized into three states: wandering shop-ping, focused shopping, and others. Wandering shopping is a state in which users make purchases in high SWS situations; focused shopping is a state in which users buy things in low SWS situations. Unlike previous studies, our work is based on an analysis of large-scale data containing shopping and search logs produced by approximately 200,000 users of a real web portal site for over a year. The results of an extensive evaluation show that our methodology can predict user's future shopping behavior types with 86% accuracy. This research is the first step towards understanding the relationship between users' mental states and their online shopping behavior.

本文言語English
ホスト出版物のタイトルProceedings - 2020 IEEE International Conference on Big Data, Big Data 2020
編集者Xintao Wu, Chris Jermaine, Li Xiong, Xiaohua Tony Hu, Olivera Kotevska, Siyuan Lu, Weijia Xu, Srinivas Aluru, Chengxiang Zhai, Eyhab Al-Masri, Zhiyuan Chen, Jeff Saltz
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1681-1688
ページ数8
ISBN(電子版)9781728162515
DOI
出版ステータスPublished - 2020 12月 10
イベント8th IEEE International Conference on Big Data, Big Data 2020 - Virtual, Atlanta, United States
継続期間: 2020 12月 102020 12月 13

出版物シリーズ

名前Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020

Conference

Conference8th IEEE International Conference on Big Data, Big Data 2020
国/地域United States
CityVirtual, Atlanta
Period20/12/1020/12/13

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 情報システム
  • 情報システムおよび情報管理
  • 安全性、リスク、信頼性、品質管理

フィンガープリント

「Search Wandering Score: Predicting Timings of Online Shopping based on Wandering in User's Web Search Queries」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル