TY - JOUR
T1 - Selective targeting by preS1 domain of hepatitis B surface antigen conjugated with phosphorylcholine-based amphiphilic block copolymer micelles as a biocompatible, drug delivery carrier for treatment of human hepatocellular carcinoma with paclitaxel
AU - Miyata, Ryohei
AU - Ueda, Masakazu
AU - Jinno, Hiromitsu
AU - Konno, Tomohiro
AU - Ishihara, Kazuhiko
AU - Ando, Nobutoshi
AU - Kitagawa, Yuko
PY - 2009/5/15
Y1 - 2009/5/15
N2 - Using dithioester-capped 2-methacryloyloxyethyl phosphorylcholine (MPC) as a macro chain transfer agent, a diblock copolymer was synthesized with n-butyl methacrylate (BMA) as hydrophobic core-forming blocks. The MPC-BMA unit was copolymerized with an immobilizable unit, p-nitrophenylcarbonyloxyethyl methacrylate (NPMA). The NPMA moiety then was modified by the addition of preS1 domain of hepatitis B surface antigen (HBsAg). This micelle-forming nanoparticle, the poly (MPC-co-BMA-co-NPMA) (PMBN) conjugated with preS1 enables solubilization of paclitaxel (PTX) with increased hepatotropism. The 50% inhibitory concentration (IC50) values of PTX and PTX/PMBN-preS1 against the human hepatocellular carcinoma cell line, HepG2, were 1,008 and 131 nM, respectively (p < 0.05). Conjugation of preS1 to PMBN enhanced strongly the synergistic inhibitory effect of paclitaxel on HepG2 cells in vitro, whereas such a change in IC50 was not detected against the human squamous cell carcinoma cell line, A431. Tumor growth rates of a HepG2 xenograft in Balb/c nude mice after intraperitoneal injection of PTX, PTX/PMBN and PTX/PMBN-preS1 were +97.9%, -74.3% and -96.2%*, respectively (*p < 0.05 versus PTX). The local paclitaxel levels after administration of the PMBN-preS1 conjugate were determined in the xenografts by high-performance liquid chromatography and were 8 times higher than that after administration of paclitaxel alone. No side effects attributable to PMBN-preS1 were observed histologically in vital organs, and body weight loss was significantly less in the PTX/PMBN-preS1 group. These studies demonstrate that PMBN-preS1 may be used as a human hepatocyte-specific drug delivery carrier without serious adverse effects.
AB - Using dithioester-capped 2-methacryloyloxyethyl phosphorylcholine (MPC) as a macro chain transfer agent, a diblock copolymer was synthesized with n-butyl methacrylate (BMA) as hydrophobic core-forming blocks. The MPC-BMA unit was copolymerized with an immobilizable unit, p-nitrophenylcarbonyloxyethyl methacrylate (NPMA). The NPMA moiety then was modified by the addition of preS1 domain of hepatitis B surface antigen (HBsAg). This micelle-forming nanoparticle, the poly (MPC-co-BMA-co-NPMA) (PMBN) conjugated with preS1 enables solubilization of paclitaxel (PTX) with increased hepatotropism. The 50% inhibitory concentration (IC50) values of PTX and PTX/PMBN-preS1 against the human hepatocellular carcinoma cell line, HepG2, were 1,008 and 131 nM, respectively (p < 0.05). Conjugation of preS1 to PMBN enhanced strongly the synergistic inhibitory effect of paclitaxel on HepG2 cells in vitro, whereas such a change in IC50 was not detected against the human squamous cell carcinoma cell line, A431. Tumor growth rates of a HepG2 xenograft in Balb/c nude mice after intraperitoneal injection of PTX, PTX/PMBN and PTX/PMBN-preS1 were +97.9%, -74.3% and -96.2%*, respectively (*p < 0.05 versus PTX). The local paclitaxel levels after administration of the PMBN-preS1 conjugate were determined in the xenografts by high-performance liquid chromatography and were 8 times higher than that after administration of paclitaxel alone. No side effects attributable to PMBN-preS1 were observed histologically in vital organs, and body weight loss was significantly less in the PTX/PMBN-preS1 group. These studies demonstrate that PMBN-preS1 may be used as a human hepatocyte-specific drug delivery carrier without serious adverse effects.
KW - 2-methacryloyloxyethyl phosphorylcholine polymer
KW - Amphiphilic block copolymer micelles
KW - Hepatitis B surface antigen
KW - Hepatocellular carcinoma
KW - Paclitaxel
UR - http://www.scopus.com/inward/record.url?scp=64249111611&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=64249111611&partnerID=8YFLogxK
U2 - 10.1002/ijc.24227
DO - 10.1002/ijc.24227
M3 - Article
C2 - 19173297
AN - SCOPUS:64249111611
SN - 0020-7136
VL - 124
SP - 2460
EP - 2467
JO - International Journal of Cancer
JF - International Journal of Cancer
IS - 10
ER -