抄録
We construct a self-avoiding process taking values in the finite Sierpinski gasket, and study its properties. We then study "continuum limit" processes that are suggested by the statistical mechanics of self-avoiding paths on the pre-Sierpinski gasket. We prove that there are three types of continuum limit processes according to the parameters defining the statistical mechanics of self-avoiding paths: (i) the self-avoiding process we construct in this paper; (ii) a deterministic motion along a "Peano curve" on the finite Sierpinski gasket; (iii) a deterministic motion along a line segment.
本文言語 | English |
---|---|
ページ(範囲) | 405-428 |
ページ数 | 24 |
ジャーナル | Probability Theory and Related Fields |
巻 | 88 |
号 | 4 |
DOI | |
出版ステータス | Published - 1991 12月 |
外部発表 | はい |
ASJC Scopus subject areas
- 分析
- 統計学および確率
- 統計学、確率および不確実性