Self-consistent multiple complex-kink solutions in bogoliubov-de gennes and chiral gross-neveu systems

Daisuke A. Takahashi, Muneto Nitta

研究成果: Article査読

36 被引用数 (Scopus)

抄録

We exhaust all exact self-consistent solutions of complex-valued fermionic condensates in the (1+1)-dimensional Bogoliubov-de Gennes and chiral Gross-Neveu systems under uniform boundary conditions. We obtain n complex (twisted) kinks, or gray solitons, with 2n parameters corresponding to their positions and phase shifts. Each soliton can be placed at an arbitrary position while the self-consistency requires its phase shift to be quantized by π/N for N flavors.

本文言語English
論文番号131601
ジャーナルPhysical review letters
110
13
DOI
出版ステータスPublished - 2013 3月 28

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Self-consistent multiple complex-kink solutions in bogoliubov-de gennes and chiral gross-neveu systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル