Self-growing learning vector quantization with additional learning and rule extraction abilities

Dan Mikami, Masafumi Hagiwara

研究成果: Article査読

1 被引用数 (Scopus)

抄録

In this paper, we propose a self-growing learning vector quantization (SGLVQ). The proposed SGLVQ is constructed based on the self-organizing map (SOM) and the learning vector quantization (LVQ). Learning of the SGLVQ consists of 3 steps: SOM step, LVQ step, and rule extraction step. In the LVQ step, neurons are incremented and the size of the network is adjusted automatically. The incrementation of neurons enables additional learning and contributes to obtain high recognition ability. In the rule extraction step, rules can be extracted. Computer experiments show the improvement of the recognition rate, the ability of additional learning and extraction of the rules.

本文言語English
ページ(範囲)2895-2900
ページ数6
ジャーナルProceedings of the IEEE International Conference on Systems, Man and Cybernetics
4
DOI
出版ステータスPublished - 2000 1月 1

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ハードウェアとアーキテクチャ

フィンガープリント

「Self-growing learning vector quantization with additional learning and rule extraction abilities」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル