Semi-Supervised Machine Learning Aided Anomaly Detection Method in Cellular Networks

Yutao Lu, Juan Wang, Miao Liu, Kaixuan Zhang, Guan Gui, Tomoaki Ohtsuki, Fumiyuki Adachi

研究成果: Article査読

14 被引用数 (Scopus)

抄録

The ever-increasing amount of data in cellular networks poses challenges for network operators to monitor the quality of experience (QoE). Traditional key quality indicators (KQIs)-based hard decision methods are difficult to undertake the task of QoE anomaly detection in the case of big data. To solve this problem, in this paper, we propose a KQIs-based QoE anomaly detection framework using semi-supervised machine learning algorithm, i.e., iterative positive sample aided one-class support vector machine (IPS-OCSVM). There are four steps for realizing the proposed method while the key step is combining machine learning with the network operator's expert knowledge using OCSVM. Our proposed IPS-OCSVM framework realizes QoE anomaly detection through soft decision and can easily fine-Tune the anomaly detection ability on demand. Moreover, we prove that the fluctuation of KQIs thresholds based on expert knowledge has a limited impact on the result of anomaly detection. Finally, experiment results are given to confirm the proposed IPS-OCSVM framework for QoE anomaly detection in cellular networks.

本文言語English
論文番号9096623
ページ(範囲)8459-8467
ページ数9
ジャーナルIEEE Transactions on Vehicular Technology
69
8
DOI
出版ステータスPublished - 2020 8月

ASJC Scopus subject areas

  • 自動車工学
  • 航空宇宙工学
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Semi-Supervised Machine Learning Aided Anomaly Detection Method in Cellular Networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル