TY - JOUR
T1 - Simultaneous Suppression of Translational and Tilt Vibrations in a Superconducting Magnetic Levitation System by a Gyroscopic Damper
AU - Fujita, Kentaro
AU - Sugiura, Toshihiko
N1 - Publisher Copyright:
© 2002-2011 IEEE.
PY - 2022/6/1
Y1 - 2022/6/1
N2 - In this paper, suppression effect of a gyroscopic damper on vibrations of a body levitated by magnetic force acting from superconductors is investigated by numerical calculations. Because of the low damping property of the superconducting magnetic levitation system, simultaneous suppression of multi-degree-of-freedom vibration due to the coupled translational and tilting motions of the levitating body and suppression of nonlinear vibration are important development issues. A gyroscopic damper has been considered as a passive vibration suppression method that takes advantage of the control-free features of superconducting magnetic levitation systems, and if the design parameters are optimized, it may be possible to simultaneously suppress not only tilt vibration but also translational vibration. In this paper, the governing equations are first derived from the analytical model, and then numerical calculations are performed. As a result, the simultaneous suppression effect of the gyroscopic damper on the translational and tilt vibrations of the levitating body was numerically confirmed. Furthermore, the suppression effect of the gyroscopic damper on the nonlinear vibration of the levitating body was also confirmed numerically.
AB - In this paper, suppression effect of a gyroscopic damper on vibrations of a body levitated by magnetic force acting from superconductors is investigated by numerical calculations. Because of the low damping property of the superconducting magnetic levitation system, simultaneous suppression of multi-degree-of-freedom vibration due to the coupled translational and tilting motions of the levitating body and suppression of nonlinear vibration are important development issues. A gyroscopic damper has been considered as a passive vibration suppression method that takes advantage of the control-free features of superconducting magnetic levitation systems, and if the design parameters are optimized, it may be possible to simultaneously suppress not only tilt vibration but also translational vibration. In this paper, the governing equations are first derived from the analytical model, and then numerical calculations are performed. As a result, the simultaneous suppression effect of the gyroscopic damper on the translational and tilt vibrations of the levitating body was numerically confirmed. Furthermore, the suppression effect of the gyroscopic damper on the nonlinear vibration of the levitating body was also confirmed numerically.
KW - Amplitude reduction
KW - gyroscopic damper
KW - multi-degree-of-freedom vibration
KW - nonlinear resonance
KW - superconducting magnetic levitation
UR - http://www.scopus.com/inward/record.url?scp=85125747397&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85125747397&partnerID=8YFLogxK
U2 - 10.1109/TASC.2022.3153245
DO - 10.1109/TASC.2022.3153245
M3 - Article
AN - SCOPUS:85125747397
SN - 1051-8223
VL - 32
JO - IEEE Transactions on Applied Superconductivity
JF - IEEE Transactions on Applied Superconductivity
IS - 4
M1 - 3601904
ER -