Small area estimation with spatially varying natural exponential families

Shonosuke Sugasawa, Yuki Kawakubo, Kota Ogasawara

研究成果: Article査読

抄録

Two-stage hierarchical models have been widely used in small area estimation to produce indirect estimates of areal means. When the areas are treated exchangeably and the model parameters are assumed to be the same over all areas, we might lose the efficiency in the presence of spatial heterogeneity. To overcome this problem, we consider a two-stage area-level model based on natural exponential family with spatially varying model parameters. We employ geographically weighted regression approach to estimating the varying parameters and suggest a new empirical Bayes estimator of the areal mean. We also discuss some related problems, including the mean squared error estimation, benchmarked estimation and estimation in non-sampled areas. The performance of the proposed method is evaluated through simulations and applications to two data sets.

本文言語English
ページ(範囲)1039-1056
ページ数18
ジャーナルJournal of Statistical Computation and Simulation
90
6
DOI
出版ステータスPublished - 2020 4月 12
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • モデリングとシミュレーション
  • 統計学、確率および不確実性
  • 応用数学

フィンガープリント

「Small area estimation with spatially varying natural exponential families」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル