Some novel physical structures of a (2+1)-dimensional variable-coefficient Korteweg–de Vries system

Yaqing Liu, Linyu Peng

研究成果: Article査読

2 被引用数 (Scopus)

抄録

In this paper, we study the novel nonlinear wave structures of a (2+1)-dimensional variable-coefficient Korteweg–de Vries (KdV) system by its analytic solutions. Its N-soliton solutions are obtained via Hirota's bilinear method, and in particular, the hybrid solutions of lump, breather and line solitons are derived by the long wave limit method. In addition to soliton solutions, similarity reduction, including similarity solutions (also known as group-invariant solutions) and novel non-autonomous rational third-order Painlevé equations, is achieved through symmetry analysis. The analytic results, together with illustrative wave interactions, show interesting physical features, that may shed some light on the study of other variable-coefficient nonlinear systems.

本文言語English
論文番号113430
ジャーナルChaos, Solitons and Fractals
171
DOI
出版ステータスPublished - 2023 6月

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数学 (全般)
  • 数理物理学
  • 物理学および天文学(全般)
  • 応用数学

フィンガープリント

「Some novel physical structures of a (2+1)-dimensional variable-coefficient Korteweg–de Vries system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル