TY - JOUR
T1 - Sorafenib targets and inhibits the oncogenic properties of endometrial cancer stem cells via the RAF/ERK pathway
AU - Takao, Tomoka
AU - Masuda, Hirotaka
AU - Kajitani, Takashi
AU - Miki, Fumie
AU - Miyazaki, Kaoru
AU - Yoshimasa, Yushi
AU - Katakura, Satomi
AU - Tomisato, Shoko
AU - Uchida, Sayaka
AU - Uchida, Hiroshi
AU - Tanaka, Mamoru
AU - Maruyama, Tetsuo
N1 - Funding Information:
We thank the Collaborative Research Resources, School of Medicine, Keio University for their technical support and Rika Shibata for the secretarial assistance. Four- to five-week-old female ICR null/null (nude) mice were obtained from Charles River Laboratories Japan, Inc. (Yokohama, Japan). All mice were maintained under specific-pathogen-free conditions in accordance with the guidelines for the Care and Use of Laboratory Animals of the Keio University School of Medicine. All mouse experiments were performed under approval of the Institutional Animal Care and Use Committee of Keio University School of Medicine (approval numbers 16066-1, 160660-2, and 17037-3
Funding Information:
This work was supported by the project for Whole Implementation to Support and Ensure the Female Life from Medical Research and Development (AMED) under grant number JP17gk0210006 (T.M.) and by the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (JSPS KAKENHI) 19K18705 (T.T.), 16H05474 (T.M.), and 20H03826 (T.M.).
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Distinct subsets of cancer stem cells (CSCs) drive the initiation and progression of malignant tumors via enhanced self-renewal and development of treatment/apoptosis resistance. Endometrial CSC-selective drugs have not been successfully developed because most endometrial cell lines do not contain a sufficient proportion of stable CSCs. Here, we aimed to identify endometrial CSC-containing cell lines and to search for endometrial CSC-selective drugs. Methods: We first assessed the presence of CSCs by identifying side populations (SPs) in several endometrial cancer cell lines. We then characterized cell viability, colony-formation, transwell invasion and xenotransplantion capability using the isolated SP cells. We also conducted real-time RT-PCR, immunoblot and immunofluorescence analyses of the cells’ expression of CSC-associated markers. Focusing on 14 putative CSC-selective drugs, we characterized their effects on the proliferation and apoptosis of endometrial cancer cell lines, examining cell viability and annexin V staining. We further examined the inhibitory effects of the selected drugs, focusing on proliferation, invasion, expression of CSC-associated markers and tumor formation. Results: We focused on HHUA cells, an endometrial cancer cell line derived from a well-differentiated endometrial adenocarcinoma. HHUA cells contained a sufficient proportion of stable CSCs with an SP phenotype (HHUA-SP). HHUA-SP showed greater proliferation, colony-formation, and invasive capabilities compared with the main population of HHUA cells (HHUA-MP). HHUA-SP generated larger tumors with higher expression of proliferation-related markers, Ki67, c-MYC and phosphorylated ERK compared with HHUA-MP when transplanted into immunodeficient mice. Among the 14 candidate drugs, sorafenib, an inhibitor of RAF pathways and multiple kinase receptors, inhibited cell proliferation and invasion in both HHUA-SP and -MP, but more profoundly in HHUA-SP. In vivo treatment with sorafenib for 4 weeks reduced the weights of HHUA-SP-derived tumors and decreased the expression of Ki67, ZEB1, and RAF1. Conclusions: Our results suggest that HHUA is a useful cell line for discovery and identification of endometrial CSC-selective drugs, and that sorafenib may be an effective anti-endometrial cancer drug targeting endometrial CSCs.
AB - Background: Distinct subsets of cancer stem cells (CSCs) drive the initiation and progression of malignant tumors via enhanced self-renewal and development of treatment/apoptosis resistance. Endometrial CSC-selective drugs have not been successfully developed because most endometrial cell lines do not contain a sufficient proportion of stable CSCs. Here, we aimed to identify endometrial CSC-containing cell lines and to search for endometrial CSC-selective drugs. Methods: We first assessed the presence of CSCs by identifying side populations (SPs) in several endometrial cancer cell lines. We then characterized cell viability, colony-formation, transwell invasion and xenotransplantion capability using the isolated SP cells. We also conducted real-time RT-PCR, immunoblot and immunofluorescence analyses of the cells’ expression of CSC-associated markers. Focusing on 14 putative CSC-selective drugs, we characterized their effects on the proliferation and apoptosis of endometrial cancer cell lines, examining cell viability and annexin V staining. We further examined the inhibitory effects of the selected drugs, focusing on proliferation, invasion, expression of CSC-associated markers and tumor formation. Results: We focused on HHUA cells, an endometrial cancer cell line derived from a well-differentiated endometrial adenocarcinoma. HHUA cells contained a sufficient proportion of stable CSCs with an SP phenotype (HHUA-SP). HHUA-SP showed greater proliferation, colony-formation, and invasive capabilities compared with the main population of HHUA cells (HHUA-MP). HHUA-SP generated larger tumors with higher expression of proliferation-related markers, Ki67, c-MYC and phosphorylated ERK compared with HHUA-MP when transplanted into immunodeficient mice. Among the 14 candidate drugs, sorafenib, an inhibitor of RAF pathways and multiple kinase receptors, inhibited cell proliferation and invasion in both HHUA-SP and -MP, but more profoundly in HHUA-SP. In vivo treatment with sorafenib for 4 weeks reduced the weights of HHUA-SP-derived tumors and decreased the expression of Ki67, ZEB1, and RAF1. Conclusions: Our results suggest that HHUA is a useful cell line for discovery and identification of endometrial CSC-selective drugs, and that sorafenib may be an effective anti-endometrial cancer drug targeting endometrial CSCs.
KW - Cancer stem cells
KW - Endometrial cancer
KW - HHUA
KW - Side-population
KW - Sorafenib
UR - http://www.scopus.com/inward/record.url?scp=85131625423&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131625423&partnerID=8YFLogxK
U2 - 10.1186/s13287-022-02888-y
DO - 10.1186/s13287-022-02888-y
M3 - Article
C2 - 35659728
AN - SCOPUS:85131625423
SN - 1757-6512
VL - 13
JO - Stem Cell Research and Therapy
JF - Stem Cell Research and Therapy
IS - 1
M1 - 225
ER -