抄録
We propose a novel sparsity-aware adaptive filtering algorithm based on iterative use of weighted soft-thresholding. The weights are determined based on a rough local approximation of the p norm (0 < p < 1). The proposed algorithm operates the weighted soft-thresholding for enhancing the sparsity, following estimation error managements with the affine projection. The proposed weighting technique alleviates an extra bias of no benefit caused by shrinking dominant coefficients. The numerical examples demonstrate that the proposed weighting technique outperforms the existing one when the situation changes under the fixed parameter settings.
本文言語 | English |
---|---|
ページ | 2749-2752 |
ページ数 | 4 |
DOI | |
出版ステータス | Published - 2012 9月 28 |
外部発表 | はい |
イベント | 2012 IEEE International Symposium on Circuits and Systems, ISCAS 2012 - Seoul, Korea, Republic of 継続期間: 2012 5月 20 → 2012 5月 23 |
Other
Other | 2012 IEEE International Symposium on Circuits and Systems, ISCAS 2012 |
---|---|
国/地域 | Korea, Republic of |
City | Seoul |
Period | 12/5/20 → 12/5/23 |
ASJC Scopus subject areas
- ハードウェアとアーキテクチャ
- 電子工学および電気工学