Stiffness Estimation from Vision and Touch Using Object Detection and Probabilistic Model: An Application to Object Identification

Masahiro Kamigaki, Seiichiro Katsura

研究成果: Conference contribution

抄録

Interactions between robots and their environment are essential in many robotic tasks. In the interaction, both visual and haptic information are important. Visual information gives us a state of environment before the interactions. On the other hand, haptic information gives us that after the interactions. Recent studies investigate relationships between vision and touch using deep learning. However, the models become complicated and it is difficult to understand. In this study, we propose a framework that can estimate a probabilistic distribution of a object's stiffness using visual observation and contact information based on object detection and Gaussian mixture model (GMM). We focused on environmental stiffness as one of the important properties of environment. The proposed framework can use prior knowledge of the environment in designing parameters of GMM. In addition, We applied the proposed method to object identification task and experimentally validated it.

本文言語English
ホスト出版物のタイトルIECON 2021 - 47th Annual Conference of the IEEE Industrial Electronics Society
出版社IEEE Computer Society
ISBN(電子版)9781665435543
DOI
出版ステータスPublished - 2021 10月 13
イベント47th Annual Conference of the IEEE Industrial Electronics Society, IECON 2021 - Toronto, Canada
継続期間: 2021 10月 132021 10月 16

出版物シリーズ

名前IECON Proceedings (Industrial Electronics Conference)
2021-October

Conference

Conference47th Annual Conference of the IEEE Industrial Electronics Society, IECON 2021
国/地域Canada
CityToronto
Period21/10/1321/10/16

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「Stiffness Estimation from Vision and Touch Using Object Detection and Probabilistic Model: An Application to Object Identification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル