Supervised nonnegative matrix factorization with Dual-Itakura-Saito and Kullback-Leibler divergences for music transcription

Hideaki Kagami, Masahiro Yukawa

    研究成果: Conference contribution

    5 被引用数 (Scopus)

    抄録

    In this paper, we present a convex-analytic approach to supervised nonnegative matrix factorization (SNMF) based on the Dual-Itakura-Saito (Dual-IS) and Kullback-Leibler (KL) divergences for music transcription. The Dual-IS and KL divergences define convex fidelity functions, whereas the IS divergence defines a nonconvex one. The SNMF problem is formulated as minimizing the divergence-based fidelity function penalized by the ℓ1 and row-block ℓ1 norms subject to the nonnegativity constraint. Simulation results show that (i) the use of the Dual-IS and KL divergences yields better performance than the squared Euclidean distance and that (ii) the use of the Dual-IS divergence prevents from false alarms efficiently.

    本文言語English
    ホスト出版物のタイトル2016 24th European Signal Processing Conference, EUSIPCO 2016
    出版社European Signal Processing Conference, EUSIPCO
    ページ1138-1142
    ページ数5
    2016-November
    ISBN(電子版)9780992862657
    DOI
    出版ステータスPublished - 2016 11月 28
    イベント24th European Signal Processing Conference, EUSIPCO 2016 - Budapest, Hungary
    継続期間: 2016 8月 282016 9月 2

    Other

    Other24th European Signal Processing Conference, EUSIPCO 2016
    国/地域Hungary
    CityBudapest
    Period16/8/2816/9/2

    ASJC Scopus subject areas

    • 信号処理
    • 電子工学および電気工学

    フィンガープリント

    「Supervised nonnegative matrix factorization with Dual-Itakura-Saito and Kullback-Leibler divergences for music transcription」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル