抄録
In this paper, we present a convex-analytic approach to supervised nonnegative matrix factorization (SNMF) based on the Dual-Itakura-Saito (Dual-IS) and Kullback-Leibler (KL) divergences for music transcription. The Dual-IS and KL divergences define convex fidelity functions, whereas the IS divergence defines a nonconvex one. The SNMF problem is formulated as minimizing the divergence-based fidelity function penalized by the ℓ1 and row-block ℓ1 norms subject to the nonnegativity constraint. Simulation results show that (i) the use of the Dual-IS and KL divergences yields better performance than the squared Euclidean distance and that (ii) the use of the Dual-IS divergence prevents from false alarms efficiently.
本文言語 | English |
---|---|
ホスト出版物のタイトル | 2016 24th European Signal Processing Conference, EUSIPCO 2016 |
出版社 | European Signal Processing Conference, EUSIPCO |
ページ | 1138-1142 |
ページ数 | 5 |
巻 | 2016-November |
ISBN(電子版) | 9780992862657 |
DOI | |
出版ステータス | Published - 2016 11月 28 |
イベント | 24th European Signal Processing Conference, EUSIPCO 2016 - Budapest, Hungary 継続期間: 2016 8月 28 → 2016 9月 2 |
Other
Other | 24th European Signal Processing Conference, EUSIPCO 2016 |
---|---|
国/地域 | Hungary |
City | Budapest |
Period | 16/8/28 → 16/9/2 |
ASJC Scopus subject areas
- 信号処理
- 電子工学および電気工学