TY - JOUR
T1 - Supramolecular nanoarchitectures for light energy conversion
AU - Hasobe, Taku
PY - 2010
Y1 - 2010
N2 - Recent developments in synthetic and supramolecular techniques have made it possible to control precisely, organize and arrange molecules at the nanometre level. Such synthetic and supramolecular strategies enable us to construct photofunctional molecular architectures for light energy conversion, such as photovoltaics. In photovoltaic cells, processes such as light-harvesting, charge separation for carrier generation, and carrier transport are generally required. Therefore, the construction of supramolecular assemblies based on these three processes is interesting and promising for the future development of photovoltaics. In this perspective, the focus is on the recent developments of supramolecular systems for light energy conversion, which are mainly composed of porphyrin dyes and nanocarbon materials, such as fullerenes and carbon nanotubes. The specific topics are as follows: (i) preparation, photodynamics, and photoelectrochemistry of self-assembled porphyrin nanoparticles prepared by simple blend, (ii) highly organized supramolecular nanoassemblies of porphyrins and fullerenes using gold nanoparticles, dendritic and polypeptide structures, (iii) the supramolecular formation and photoelectrochemical property of carbon nanotubes, and (iv) supramolecular photofunctional nanorods of porphyrins.
AB - Recent developments in synthetic and supramolecular techniques have made it possible to control precisely, organize and arrange molecules at the nanometre level. Such synthetic and supramolecular strategies enable us to construct photofunctional molecular architectures for light energy conversion, such as photovoltaics. In photovoltaic cells, processes such as light-harvesting, charge separation for carrier generation, and carrier transport are generally required. Therefore, the construction of supramolecular assemblies based on these three processes is interesting and promising for the future development of photovoltaics. In this perspective, the focus is on the recent developments of supramolecular systems for light energy conversion, which are mainly composed of porphyrin dyes and nanocarbon materials, such as fullerenes and carbon nanotubes. The specific topics are as follows: (i) preparation, photodynamics, and photoelectrochemistry of self-assembled porphyrin nanoparticles prepared by simple blend, (ii) highly organized supramolecular nanoassemblies of porphyrins and fullerenes using gold nanoparticles, dendritic and polypeptide structures, (iii) the supramolecular formation and photoelectrochemical property of carbon nanotubes, and (iv) supramolecular photofunctional nanorods of porphyrins.
UR - http://www.scopus.com/inward/record.url?scp=72949109940&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=72949109940&partnerID=8YFLogxK
U2 - 10.1039/b910564f
DO - 10.1039/b910564f
M3 - Review article
C2 - 20024442
AN - SCOPUS:72949109940
SN - 1463-9076
VL - 12
SP - 44
EP - 57
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 1
ER -