TY - JOUR
T1 - Sustained down-regulation of β-dystroglycan and associated dysfunctions of astrocytic endfeet in epileptic cerebral cortex
AU - Gondo, Asako
AU - Shinotsuka, Takanori
AU - Morita, Ayaka
AU - Abe, Yoichiro
AU - Yasui, Masato
AU - Nuriya, Mutsuo
N1 - Publisher Copyright:
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2014/10/31
Y1 - 2014/10/31
N2 - Epilepsy is characterized by the abnormal activation of neurons in the cerebral cortex, but the molecular and cellular mechanisms contributing to the development of recurrent seizures are largely unknown. Recently, the critical involvement of astrocytes in the pathophysiology of epilepsy has been proposed. However, the nature of plastic modulations of astrocytic proteins in the epileptic cortex remains poorly understood. In this study, we utilized the zero magnesium in vitro model of epilepsy and examined the potential molecular changes of cortical astrocytes, focusing specifically on endfeet, where specialized biochemical compartments exist. We find that the continuous epileptic activation of neurons for 1 h decreases the expression level of β-dystroglycan (βDG) in acute cortical brain slices prepared from mice. This change is completely abolished by the pharmacological blockade of NMDA-type glutamate receptors as well as by matrix metalloproteinase inhibitors. Consistent with the highly specialized localization of βDG at astrocytic endfeet, where it plays a pivotal role in anchoring endfeet-enriched proteins in astrocytes, the down-regulation of βDG is accompanied by a decrease in the expression of AQP4 but not laminin. Importantly, this down-regulation of βDG persists for at least 1 h, even after the apparent recovery of neuronal activation. Finally, we show that the down-regulation of βDG is associated with the dysfunction of the endfeet at the blood-brain interface as a diffusion barrier. These results suggest that the sustained downregulation of βDG leads to dysfunctions of astrocytic endfeet in the epileptic cerebral cortex and may contribute to the pathogenesis of epilepsy.
AB - Epilepsy is characterized by the abnormal activation of neurons in the cerebral cortex, but the molecular and cellular mechanisms contributing to the development of recurrent seizures are largely unknown. Recently, the critical involvement of astrocytes in the pathophysiology of epilepsy has been proposed. However, the nature of plastic modulations of astrocytic proteins in the epileptic cortex remains poorly understood. In this study, we utilized the zero magnesium in vitro model of epilepsy and examined the potential molecular changes of cortical astrocytes, focusing specifically on endfeet, where specialized biochemical compartments exist. We find that the continuous epileptic activation of neurons for 1 h decreases the expression level of β-dystroglycan (βDG) in acute cortical brain slices prepared from mice. This change is completely abolished by the pharmacological blockade of NMDA-type glutamate receptors as well as by matrix metalloproteinase inhibitors. Consistent with the highly specialized localization of βDG at astrocytic endfeet, where it plays a pivotal role in anchoring endfeet-enriched proteins in astrocytes, the down-regulation of βDG is accompanied by a decrease in the expression of AQP4 but not laminin. Importantly, this down-regulation of βDG persists for at least 1 h, even after the apparent recovery of neuronal activation. Finally, we show that the down-regulation of βDG is associated with the dysfunction of the endfeet at the blood-brain interface as a diffusion barrier. These results suggest that the sustained downregulation of βDG leads to dysfunctions of astrocytic endfeet in the epileptic cerebral cortex and may contribute to the pathogenesis of epilepsy.
UR - http://www.scopus.com/inward/record.url?scp=84910047834&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84910047834&partnerID=8YFLogxK
U2 - 10.1074/jbc.M114.588384
DO - 10.1074/jbc.M114.588384
M3 - Article
C2 - 25228692
AN - SCOPUS:84910047834
SN - 0021-9258
VL - 289
SP - 30279
EP - 30288
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 44
ER -