Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems

Makoto Katori, Hideki Tanemura

研究成果: Article査読

94 被引用数 (Scopus)

抄録

As an extension of the theory of Dyson's Brownian motion models for the standard Gaussian random-matrix ensembles, we report a systematic study of Hermitian matrix-valued processes and their eigenvalue processes associated with the chiral and nonstandard random-matrix ensembles. In addition to the noncolliding Brownian motions, we introduce a one-parameter family of temporally homogeneous noncolliding systems of the Bessel processes and a two-parameter family of temporally inhomogeneous noncolliding systems of Yor's generalized meanders and show that all of the ten classes of eigenvalue statistics in the Altland-Zirnbauer classification are realized as particle distributions in the special cases of these diffusion particle systems. As a corollary of each equivalence in distribution of a temporally inhomogeneous eigenvalue process and a noncolliding diffusion process, a stochastic-calculus proof of a version of the Harish-Chandra (Itzykson-Zuber) formula of integral over unitary group is established.

本文言語English
ページ(範囲)3058-3085
ページ数28
ジャーナルJournal of Mathematical Physics
45
8
DOI
出版ステータスPublished - 2004 8月
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル