TY - JOUR
T1 - Synthesis of 5-Hydroxy-3′,4′,7-trimethoxyflavone and Related Compounds and Elucidation of Their Reversal Effects on BCRP/ABCG2-Mediated Anticancer Drug Resistance
AU - Tsunekawa, Ryuji
AU - Katayama, Kazuhiro
AU - Hanaya, Kengo
AU - Higashibayashi, Shuhei
AU - Sugimoto, Yoshikazu
AU - Sugai, Takeshi
N1 - Publisher Copyright:
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2019/1/18
Y1 - 2019/1/18
N2 - 3′,4′,7-Trimethoxyflavone (TMF) has been reported to show a potent reversal effect on drug resistance mediated by breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2). In this study, we designed and synthesized five derivatives with either a hydroxy group or a fluorine atom at C-5 and several kinds of capping moiety at the C-7 hydroxy group, on the same 3′,4′-dimethoxy-substituted flavone skeleton. We subsequently evaluated the efficacies of these compounds against BCRP-expressing human leukaemia K562/BCRP cells. Reversal of drug resistance was expressed as the concentration of compound causing a twofold reduction in drug sensitivity (RI 50 ). Of the synthesized compounds, the reversal effect of 5-hydroxy-3′,4′,7-trimethoxyflavone (HTMF, RI 50 7.2 nm) towards 7-ethyl-10-hydroxycamptothecin (SN-38) was stronger than that of TMF (RI 50 18 nm). Fluoro-substituted 5-fluoro-3′,4′,7-trimethoxyflavone (FTMF, RI 50 25 nm) and monoglycosylated 7-(β-glucosyloxy)-5-hydroxy-3′,4′-dimethoxyflavone (GOHDMF, 91 nm) also exhibited reversal effects, whereas the di- and triglycoside derivatives did not. TMF, HTMF and FTMF at 0.01–10 μm upregulated the K562/BCRP cellular accumulation of Hoechst 33342 nuclear staining dye. In addition, western blotting revealed that treatment of K562/BCRP cells with 0.1 μm TMF, HTMF or FTMT suppressed the expression of BCRP. HTMF showed the strongest inhibition of BCRP-mediated efflux and suppression of BCRP expression of the three effective synthesized flavones.
AB - 3′,4′,7-Trimethoxyflavone (TMF) has been reported to show a potent reversal effect on drug resistance mediated by breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2). In this study, we designed and synthesized five derivatives with either a hydroxy group or a fluorine atom at C-5 and several kinds of capping moiety at the C-7 hydroxy group, on the same 3′,4′-dimethoxy-substituted flavone skeleton. We subsequently evaluated the efficacies of these compounds against BCRP-expressing human leukaemia K562/BCRP cells. Reversal of drug resistance was expressed as the concentration of compound causing a twofold reduction in drug sensitivity (RI 50 ). Of the synthesized compounds, the reversal effect of 5-hydroxy-3′,4′,7-trimethoxyflavone (HTMF, RI 50 7.2 nm) towards 7-ethyl-10-hydroxycamptothecin (SN-38) was stronger than that of TMF (RI 50 18 nm). Fluoro-substituted 5-fluoro-3′,4′,7-trimethoxyflavone (FTMF, RI 50 25 nm) and monoglycosylated 7-(β-glucosyloxy)-5-hydroxy-3′,4′-dimethoxyflavone (GOHDMF, 91 nm) also exhibited reversal effects, whereas the di- and triglycoside derivatives did not. TMF, HTMF and FTMF at 0.01–10 μm upregulated the K562/BCRP cellular accumulation of Hoechst 33342 nuclear staining dye. In addition, western blotting revealed that treatment of K562/BCRP cells with 0.1 μm TMF, HTMF or FTMT suppressed the expression of BCRP. HTMF showed the strongest inhibition of BCRP-mediated efflux and suppression of BCRP expression of the three effective synthesized flavones.
KW - BCRP/ABCG2
KW - antitumor agents
KW - drug resistance
KW - structure–activity relationships
KW - substituted flavones
UR - http://www.scopus.com/inward/record.url?scp=85054566501&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054566501&partnerID=8YFLogxK
U2 - 10.1002/cbic.201800431
DO - 10.1002/cbic.201800431
M3 - Article
C2 - 30187992
AN - SCOPUS:85054566501
SN - 1439-4227
VL - 20
SP - 210
EP - 220
JO - ChemBioChem
JF - ChemBioChem
IS - 2
ER -