Tele-operation of a mobile haptic system using dynamical modal transformation

Wataru Yamanouchi, Seiichiro Katsura

研究成果: Article査読

3 被引用数 (Scopus)


Recent advances in control technology have contributed to the development of robot systems for communication. Robot systems recognize their environment on the basis of audio-visual information. Recognition methods based on audio-visual feedback have been developed by many researchers. Apart from auditory and visual information, haptic information has recently attracted attention as the third type of multimedia information. The sense of touch is useful for remote manipulation. Feedback of haptic information is realized by bilateral control. In conventional research, most systems are constructed using a master-slave system in which the master-slave systems have the same mechanical structure. However, very few studies have been carried out on force feedback systems with different mechanical structures. This paper proposes a novel control method for mobile-hapto, which involves force feedback using mobility systems. In this study, the mobile-hapto consists of a mobile robot that can move in an infinite area for motion and a joystick that is fixed at a given position and can be operated manually. To realize of force feedback in the mobilehapto, a modal transformation matrix for bilateral control is proposed. The proposed modal transformation matrix is able to change the dimension of the controlled value. The joystick is treated as a pedal by changing two dimensions of the mobile robot position. The mobile-hapto is possible to be subjected to intuitive manipulation. The validity of the proposed method is experimentally verified.

ジャーナルieej transactions on industry applications
出版ステータスPublished - 2012 4月 2

ASJC Scopus subject areas

  • 産業および生産工学
  • 電子工学および電気工学


「Tele-operation of a mobile haptic system using dynamical modal transformation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。