The effect of timing in the administration of hepatocyte growth factor to modulate BMP-2-induced osteoblast differentiation

Toshiki Kawasaki, Yasuo Niki, Takeshi Miyamoto, Keisuke Horiuchi, Morio Matsumoto, Mamoru Aizawa, Yoshiaki Toyama

研究成果: Article査読

31 被引用数 (Scopus)


Development of bone morphogenetic protein (BMP) signaling modulators may provide useful therapeutic options for the treatment of large bony defects in clinical settings. Controversy remains over whether hepatocyte growth factor (HGF) is a positive or negative modulator of BMP-induced osteogenesis. This study analyzed osteogenic properties of HGF, particularly during BMP-2-induced bone formation. Using a mouse model of ectopic bone formation, HGF-impregnated gelatin sponges displayed significantly reduced bone formation induced by BMP-2, both radiologically and histologically. Abrogation of endogenous HGF production by knockdown of HGF mRNA resulted in upregulation of BMP-2-induced ALP activity for C2C12 myoblasts in vitro. In contrast, addition of exogenous HGF inhibited BMP-2-induced ALP activity and osteocalcin production by mouse embryonic fibroblasts (MEFs) through HGF-c-Met interactions. Inhibition of ALP activity by HGF was rescued by U0126, a MEK1/2 inhibitor, indicating that HGF suppresses the BMP-2-Smad axis via activation of ERK1/2. Importantly, treatment with HGF prior to administration of BMP-2 induced cellular proliferation of MEFs and did not influence subsequent osteoblast differentiation induced by BMP-2. The effects of HGF may differ according to the differentiation stage of mesenchymal stem cells, which would explain the inconsistencies seen in osteogenic properties of HGF in previous reports. The timing of HGF treatment is critical and should be carefully determined for successful induction of bone formation by BMPs.

出版ステータスPublished - 2010 2月

ASJC Scopus subject areas

  • バイオエンジニアリング
  • セラミックおよび複合材料
  • 生物理学
  • 生体材料
  • 材料力学


「The effect of timing in the administration of hepatocyte growth factor to modulate BMP-2-induced osteoblast differentiation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。