TY - JOUR
T1 - The Influence of Glucocorticoid Receptor on Sex Differences of Gene Expression Profile in Skeletal Muscle
AU - Yoshikawa, Noritada
AU - Oda, Aya
AU - Yamazaki, Hiroki
AU - Yamamoto, Motohisa
AU - Kuribara-Souta, Akiko
AU - Uehara, Masaaki
AU - Tanaka, Hirotoshi
N1 - Funding Information:
This work was supported by the Japan Agency for Medical Research and Development (AMED) [18gk0210019h0001]; Japan Society for the Promotion of Science (JSPS, KAKENHI) [JP16H05330,JP16K09230,JP17K16158,JP18KT0017,JP20K17528]. We would like to thank all members of our department and editage (www.editage.jp) for English language editing.
Publisher Copyright:
© 2021 Taylor & Francis Group, LLC.
PY - 2021
Y1 - 2021
N2 - Skeletal muscle functions as a locomotory system and maintains whole-body metabolism. Sex differences in such skeletal muscle morphology and function have been documented; however, their underlying mechanisms remain elusive. Glucocorticoids are adrenocortical hormones maintaining homeostasis, including regulating whole-body energy metabolism in addition to stress response. In skeletal muscle, glucocorticoids can reduce the synthesis of muscle proteins and simultaneously accelerate the breakdown of proteins to regulate skeletal muscle mass and energy metabolism via a transcription factor glucocorticoid receptor (GR). We herein evaluated the related contributions of the GR to sex differences of gene expression profiles in skeletal muscle using GR-floxed (GRf/f) and skeletal muscle-specific GR knockout (GRmKO) mice. There were no differences in GR mRNA and protein expression levels in gastrocnemius muscle between males and females. A DNA microarray analysis using gastrocnemius muscle from GRf/f and GRmKO mice revealed that, although most gene expression levels were identical in both sexes, genes related to cholesterol and apolipoprotein synthesis and fatty acid biosynthesis and the immunological system were predominantly expressed in males and females, respectively, in GRf/f but not in GRmKO mice. Moreover, many genes were up-regulated in response to starvation in GRf/f but not in GRmKO mice, many of which were sex-independent and functioned to maintain homeostasis, while genes that showed sex dominance related to a variety of functions. Although the genes expressed in skeletal muscle may be predominantly sex-independent, sex-dominant genes may relate to sex differences in energy metabolism and the immune system and could be controlled by the GR.
AB - Skeletal muscle functions as a locomotory system and maintains whole-body metabolism. Sex differences in such skeletal muscle morphology and function have been documented; however, their underlying mechanisms remain elusive. Glucocorticoids are adrenocortical hormones maintaining homeostasis, including regulating whole-body energy metabolism in addition to stress response. In skeletal muscle, glucocorticoids can reduce the synthesis of muscle proteins and simultaneously accelerate the breakdown of proteins to regulate skeletal muscle mass and energy metabolism via a transcription factor glucocorticoid receptor (GR). We herein evaluated the related contributions of the GR to sex differences of gene expression profiles in skeletal muscle using GR-floxed (GRf/f) and skeletal muscle-specific GR knockout (GRmKO) mice. There were no differences in GR mRNA and protein expression levels in gastrocnemius muscle between males and females. A DNA microarray analysis using gastrocnemius muscle from GRf/f and GRmKO mice revealed that, although most gene expression levels were identical in both sexes, genes related to cholesterol and apolipoprotein synthesis and fatty acid biosynthesis and the immunological system were predominantly expressed in males and females, respectively, in GRf/f but not in GRmKO mice. Moreover, many genes were up-regulated in response to starvation in GRf/f but not in GRmKO mice, many of which were sex-independent and functioned to maintain homeostasis, while genes that showed sex dominance related to a variety of functions. Although the genes expressed in skeletal muscle may be predominantly sex-independent, sex-dominant genes may relate to sex differences in energy metabolism and the immune system and could be controlled by the GR.
KW - Sex difference
KW - energy metabolism
KW - gene expression
KW - glucocorticoid receptor
KW - skeletal muscle
UR - http://www.scopus.com/inward/record.url?scp=85100917332&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100917332&partnerID=8YFLogxK
U2 - 10.1080/07435800.2021.1884874
DO - 10.1080/07435800.2021.1884874
M3 - Article
C2 - 33590778
AN - SCOPUS:85100917332
SN - 0743-5800
VL - 46
SP - 99
EP - 113
JO - Endocrine Research
JF - Endocrine Research
IS - 3
ER -