The number of contractible edges in 3-connected graphs

研究成果: Article査読

11 被引用数 (Scopus)

抄録

An edge of a 3-connected graph is called contractible if its contraction results in a 3-connected graph. Ando, Enomoto and Saito proved that every 3-connected graph of order at least five has ⌈|G|/2⌉ or more contractible edges. As another lower bound, we prove that every 3-connected graph, except for six graphs, has at least (2|E(G)| + 12)/7 contractible edges. We also determine the extremal graphs. Almost all of these extremal graphs G have more than ⌈|G|/2⌉ contractible edges.

本文言語English
ページ(範囲)333-354
ページ数22
ジャーナルGraphs and Combinatorics
4
1
DOI
出版ステータスPublished - 1988 12月 1
外部発表はい

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学

フィンガープリント

「The number of contractible edges in 3-connected graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル