抄録
Unlike the polar vortices observed in the Earth, Mars and Titan atmospheres, the observed Venus polar vortex is warmer than the midlatitudes at cloud-top levels (∼65 km). This warm polar vortex is zonally surrounded by a cold latitude band located at ∼60° latitude, which is a unique feature called 'cold collar' in the Venus atmosphere. Although these structures have been observed in numerous previous observations, the formation mechanism is still unknown. Here we perform numerical simulations of the Venus atmospheric circulation using a general circulation model, and succeed in reproducing these puzzling features in close agreement with the observations. The cold collar and warm polar region are attributed to the residual mean meridional circulation enhanced by the thermal tide. The present results strongly suggest that the thermal tide is crucial for the structure of the Venus upper polar atmosphere at and above cloud levels.
本文言語 | English |
---|---|
論文番号 | 10398 |
ジャーナル | Nature communications |
巻 | 7 |
DOI | |
出版ステータス | Published - 2016 2月 1 |
ASJC Scopus subject areas
- 化学 (全般)
- 生化学、遺伝学、分子生物学(全般)
- 物理学および天文学(全般)