The resolutions of the singular loci of the Toda lattice on the split and connected reductive Lie groups

研究成果: Article査読

抄録

In this paper we study the resolution of the singular loci of the generalized Toda lattice on the flag manifold by using blow-up. We define the gauge symmetry of the Weyl group on the fiber of this blow-up. This gauge transformation transforms the singular locus of the Toda lattice on the flag manifold into the face of Weyl chamber. Thus we show that if the orbit of the Toda lattice crosses the singular locus on the flag manifold, then the leap over the face of the Weyl chamber occurs on the fiber.

本文言語English
論文番号103558
ジャーナルJournal of Geometry and Physics
148
DOI
出版ステータスPublished - 2020 2月

ASJC Scopus subject areas

  • 数理物理学
  • 物理学および天文学(全般)
  • 幾何学とトポロジー

フィンガープリント

「The resolutions of the singular loci of the Toda lattice on the split and connected reductive Lie groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル