TY - JOUR
T1 - The use of melanosomal proteins in the immunotherapy of melanoma
AU - Kawakami, Yutaka
AU - Robbins, Paul F.
AU - Wang, Rong Fu
AU - Parkhurst, Maria
AU - Kang, Xiaoqiang
AU - Rosenberg, Steven A.
PY - 1998
Y1 - 1998
N2 - Clinical observations in the interleukin (IL) 2-based immunotherapies suggest that T cells play a central role in the rejection of melanoma. Using cDNA expression cloning, we have isolated genes encoding melanoma antigens recognized by tumor-infiltrating T lymphocytes. These antigens are categorized as (a) melanocyte-specific melanosomal proteins (MART-1/melan A, gp100, tyrosinase, TRP-1, and TRP-2), (b) tumor-specific mutated proteins (β-catenin), and (c) others (p15). A variety of mechanisms has been identified for the generation of T cell epitopes on tumor cells. Some of the HLA-A2 binding epitopes from the melanosomal antigens appear to be subdominant self-determinants with relatively low major histocompatibility complex binding affinity. The effectiveness of adoptive transfer into patients of cytotoxic T lymphocytes recognizing the melanosomal antigens, the significant correlation between vitiligo development and clinical response in patients receiving IL-2-based immunotherapies, and the sporadic tumor regressions observed in some patients following immunization with the MART-1 or gp100 peptides in incomplete Freund’s adjuvant or recombinant viruses expressing the MART-1 antigen suggest that these epitopes may represent tumor rejection antigens. Phase I immunization trials using peptides or recombinant viruses containing genes encoding the melanosomal antigens MART-1 or gp100, with or without co-administration of cytokines such as IL-2, IL-12, or granulocyte-macrophage colony-stimulating factor, are being conducted in the Surgery Branch of the National Cancer Institute. These studies may demonstrate the feasibility of using melanosomal proteins for the immunotherapy of patients with melanoma.
AB - Clinical observations in the interleukin (IL) 2-based immunotherapies suggest that T cells play a central role in the rejection of melanoma. Using cDNA expression cloning, we have isolated genes encoding melanoma antigens recognized by tumor-infiltrating T lymphocytes. These antigens are categorized as (a) melanocyte-specific melanosomal proteins (MART-1/melan A, gp100, tyrosinase, TRP-1, and TRP-2), (b) tumor-specific mutated proteins (β-catenin), and (c) others (p15). A variety of mechanisms has been identified for the generation of T cell epitopes on tumor cells. Some of the HLA-A2 binding epitopes from the melanosomal antigens appear to be subdominant self-determinants with relatively low major histocompatibility complex binding affinity. The effectiveness of adoptive transfer into patients of cytotoxic T lymphocytes recognizing the melanosomal antigens, the significant correlation between vitiligo development and clinical response in patients receiving IL-2-based immunotherapies, and the sporadic tumor regressions observed in some patients following immunization with the MART-1 or gp100 peptides in incomplete Freund’s adjuvant or recombinant viruses expressing the MART-1 antigen suggest that these epitopes may represent tumor rejection antigens. Phase I immunization trials using peptides or recombinant viruses containing genes encoding the melanosomal antigens MART-1 or gp100, with or without co-administration of cytokines such as IL-2, IL-12, or granulocyte-macrophage colony-stimulating factor, are being conducted in the Surgery Branch of the National Cancer Institute. These studies may demonstrate the feasibility of using melanosomal proteins for the immunotherapy of patients with melanoma.
KW - GP100
KW - Immunotherapy
KW - MART-1
KW - Melanoma antigens
KW - Subdominant epitopes
UR - http://www.scopus.com/inward/record.url?scp=0031870624&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031870624&partnerID=8YFLogxK
U2 - 10.1097/00002371-199807000-00001
DO - 10.1097/00002371-199807000-00001
M3 - Article
C2 - 9672845
AN - SCOPUS:0031870624
SN - 1524-9557
VL - 21
SP - 237
EP - 246
JO - Journal of Immunotherapy
JF - Journal of Immunotherapy
IS - 4
ER -