Therapeutic effect of lecithinized superoxide dismutase on bleomycin-induced pulmonary fibrosis

Ken Ichiro Tanaka, Tomoaki Ishihara, Arata Azuma, Shoji Kudoh, Masahito Ebina, Toshihiro Nukiwa, Yukihiko Sugiyama, Yuichi Tasaka, Takushi Namba, Tsutomu Ishihara, Keizo Sato, Yutaka Mizushima, Tohru Mizushima

研究成果: Article査読

66 被引用数 (Scopus)


Idiopathic pulmonary fibrosis (IPF) is thought to involve inflammatory infiltration of leukocytes, lung injury induced by reactive oxygen species (ROS), in particular superoxide anion, and fibrosis (collagen deposition). No treatment has been shown to improve definitively the prognosis for IPF patients. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide anion to hydrogen peroxide, which is subsequently detoxified by catalase. Lecithinized SOD (PC-SOD) has overcome clinical limitations of SOD, including low tissue affinity and low stability in plasma. In this study, we examined the effect of PC-SOD on bleomycin-induced pulmonary fibrosis. Severity of the bleomycin-induced fibrosis in mice was assessed by various methods, including determination of hydroxyproline levels in lung tissue. Intravenous administration of PC-SOD suppressed the bleomycin-induced increase in the number of leukocytes in bronchoalveolar lavage fluid. Bleomycin-induced collagen deposition and increased hydroxyproline levels in the lung were also suppressed in animals treated with PC-SOD, suggesting that PC-SOD suppresses bleomycininduced pulmonary fibrosis. The dose-response profile of PC-SOD was bell-shaped, but concurrent administration of catalase restored the ameliorative effect at high doses of PC-SOD. Intratracheal administration or inhalation of PC-SOD also attenuated the bleomycininduced inflammatory response and fibrosis. The bell-shaped doseresponse profile of PC-SOD was not observed for these routes of administration. We consider that, compared with intravenous administration, inhalation of PC-SOD may be a more therapeutically beneficial route of administration due to the higher safety and quality of life of the patient treated with this drug.

ジャーナルAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
出版ステータスPublished - 2010 3月

ASJC Scopus subject areas

  • 生理学
  • 呼吸器内科
  • 生理学(医学)
  • 細胞生物学


「Therapeutic effect of lecithinized superoxide dismutase on bleomycin-induced pulmonary fibrosis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。