Thermal and photochemical reactivity of oxygen atoms on gold nanocluster surfaces

Taketoshi Matsumoto, Patricia Nickut, Hironori Tsunoyama, Kazuya Watanabe, Tatsuya Tsukuda, Katharina Al-Shamery, Yoshiyasu Matsumoto

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Reduction of oxidized gold nanoclusters by exposures to foreign gases and irradiation of UV photons has been investigated using X-ray photoelectron spectroscopy. Gold nanoclusters with narrow size distributions protected by alkanethiolate ligands were deposited on a TiO2(1 1 0) surface with dip coating. Oxygen plasma etching was used for removal of alkanethiolate ligands and oxidization of gold clusters. The oxidized gold clusters were exposed to CO, C2H2, C2H4, H2, and hydrogen atoms. Although, C2H4 and H2 did not show any indications of reduction of oxidized gold clusters, CO, C2H2, and hydrogen atoms reduced the oxides on gold cluster surfaces. Among them, hydrogen atoms were most effective for reduction. Irradiation of UV photons around 400 nm could also reduce the oxidized gold clusters. The photochemical reduction mechanism was proposed as follows. The photo-reduction was initiated by electronic excitation of gold clusters and oxygen atoms activated reacted with carbon atoms at the surfaces of gold clusters. Carbon species were likely absorbed in gold clusters or remained at the boundaries between gold clusters when gold clusters agglomerated during oxygen plasma exposures. As the photochemical reduction progressed, carbon atoms segregated to the surfaces of gold clusters.

本文言語English
ページ(範囲)5226-5231
ページ数6
ジャーナルSurface Science
601
22
DOI
出版ステータスPublished - 2007 11月 15
外部発表はい

ASJC Scopus subject areas

  • 凝縮系物理学
  • 表面および界面
  • 表面、皮膜および薄膜
  • 材料化学

フィンガープリント

「Thermal and photochemical reactivity of oxygen atoms on gold nanocluster surfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル