TY - JOUR
T1 - Thermodynamic simulations of isobaric hydrate-forming operations for natural gas storage
AU - Ogawa, Hiroyuki
AU - Imura, Naotaka
AU - Miyoshi, Tatsuya
AU - Ohmura, Ryo
AU - Mori, Yasuhiko H.
PY - 2009/2/19
Y1 - 2009/2/19
N2 - This study is concerned with clathrate hydrate formation from natural gas for its storage and/or transport. During each hydrate-forming operation using an isobaric reactor into which a feed gas (i.e., natural gas with a fixed composition) is continuously supplied, the composition of the gas phase inside the reactor should continuously change as the result of preferential uptake of some species from the gas phase into the hydrate, which should, in turn, affect the subsequent hydrate formation. In a previous paper (Tsuji, H.; Kobayashi, T.; Okano, Y.; Ohmura, R.; Yasuoka, K.; Mori, Y. H. Energy Fuels 2005, 19, 1587-1597), we reported a computational scheme of thermodynamic simulations of such operations and its application to the hydrate formation from a methane + ethane + propane mixture. In the present study, we have extended the scheme to be applicable to a gas mixture composed of an arbitrary number of species and have applied it to methanebased gas mixtures simulating natural gas that may contain traces of hydrocarbons heavier than propane. Our major concern is the effects of such trace components in the feed gas during each long-term hydrate-forming operation. The vapor of some heavy hydrocarbons may accumulate in the gas phase inside the reactor, possibly leading to either the onset of its condensation or a structural transition of the hydrate being formed inside the reactor, which may pose a problem regarding the quality control of the hydrate products. The possibility of the occurrence of such a phase change or hydrate-structural transition is discussed on the basis of thermodynamic simulations.
AB - This study is concerned with clathrate hydrate formation from natural gas for its storage and/or transport. During each hydrate-forming operation using an isobaric reactor into which a feed gas (i.e., natural gas with a fixed composition) is continuously supplied, the composition of the gas phase inside the reactor should continuously change as the result of preferential uptake of some species from the gas phase into the hydrate, which should, in turn, affect the subsequent hydrate formation. In a previous paper (Tsuji, H.; Kobayashi, T.; Okano, Y.; Ohmura, R.; Yasuoka, K.; Mori, Y. H. Energy Fuels 2005, 19, 1587-1597), we reported a computational scheme of thermodynamic simulations of such operations and its application to the hydrate formation from a methane + ethane + propane mixture. In the present study, we have extended the scheme to be applicable to a gas mixture composed of an arbitrary number of species and have applied it to methanebased gas mixtures simulating natural gas that may contain traces of hydrocarbons heavier than propane. Our major concern is the effects of such trace components in the feed gas during each long-term hydrate-forming operation. The vapor of some heavy hydrocarbons may accumulate in the gas phase inside the reactor, possibly leading to either the onset of its condensation or a structural transition of the hydrate being formed inside the reactor, which may pose a problem regarding the quality control of the hydrate products. The possibility of the occurrence of such a phase change or hydrate-structural transition is discussed on the basis of thermodynamic simulations.
UR - http://www.scopus.com/inward/record.url?scp=64249097544&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=64249097544&partnerID=8YFLogxK
U2 - 10.1021/ef800799q
DO - 10.1021/ef800799q
M3 - Article
AN - SCOPUS:64249097544
SN - 0887-0624
VL - 23
SP - 849
EP - 856
JO - Energy and Fuels
JF - Energy and Fuels
IS - 2
ER -