TY - JOUR
T1 - THUMP domain containing 2 protein possibly induces resistance to cisplatin and 5-fluorouracil in in vitro human esophageal squamous cell carcinoma cells as revealed by transposon activation mutagenesis
AU - Hayashi, Masato
AU - Kawakubo, Hirofumi
AU - Fukuda, Kazumasa
AU - Mayanagi, Shuhei
AU - Nakamura, Rieko
AU - Suda, Koichi
AU - Hayashida, Testu
AU - Wada, Norihito
AU - Kitagawa, Yuko
N1 - Funding Information:
We thank Ms Satsuki Fukuhara who is a laboratory assistant at Keio University School of Medicine. We also thank Dr Li Chen for his innovative protocol, which was essential for the experiment. No animals were used in the present study.
Publisher Copyright:
© 2019 John Wiley & Sons, Ltd.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Background: Although chemotherapy is a core treatment for esophageal cancer, some patients develop drug resistance. Gene screening with transposons (i.e. mobile genetic elements) is a novel procedure for identifying chemotherapy-resistant genes. Transposon insertion can randomly affect nearby gene expression. By identifying the affected genes, candidate genes can be found. The present study aimed to identify cisplatin (CDDP)/5-fluorouracil (5-FU)-resistant genes in in vitro human esophageal squamous cell carcinoma with transposons. Methods: After establishing transposon-tagged cells, we obtained CDDP/5-FU-resistant colonies. A polymerase chain reaction and sequencing were used to identify the transposon inserted site and candidate CDDP/5-FU resistant genes. Focusing on one candidate gene, we confirmed CDDP/5-FU resistance by comparing the IC50 between drug-resistant and wild-type cells. Furthermore, we investigated gene expression by a real-time polymerase chain reaction. Finally, we mediated the candidate gene level with small interfering RNA to confirm the resistance. Results: Thirty-nine candidate genes for CDDP/5-FU resistance were identified. Nineteen were for CDDP resistance and 27 were for 5-FU resistance. Seven genes, THUMP domain-containing protein 2 (THUMPD2), nuclear factor interleukin-3-regulated protein (NFIL3), tyrosine-protein kinase transmembrane receptor 2 (ROR2), C-X-C chemokine receptor type 4 (CXCR4), thrombospondin type-1 domain-containing protein 2 (THSD7B) alpha-parvin (PARVA) and TEA domain transcription factor 1 (TEAD1), were detected as candidate genes in both colonies. Regarding THUMPD2, its expression was downregulated and knocking down THUMPD2 suggested drug resistance in both drugs. Conclusions: Thirty-nine candidate genes were identified with transposons. The downregulation of THUMPD2 was suggested to play a role in multidrug resistance in in vitro esophageal squamous cell carcinoma.
AB - Background: Although chemotherapy is a core treatment for esophageal cancer, some patients develop drug resistance. Gene screening with transposons (i.e. mobile genetic elements) is a novel procedure for identifying chemotherapy-resistant genes. Transposon insertion can randomly affect nearby gene expression. By identifying the affected genes, candidate genes can be found. The present study aimed to identify cisplatin (CDDP)/5-fluorouracil (5-FU)-resistant genes in in vitro human esophageal squamous cell carcinoma with transposons. Methods: After establishing transposon-tagged cells, we obtained CDDP/5-FU-resistant colonies. A polymerase chain reaction and sequencing were used to identify the transposon inserted site and candidate CDDP/5-FU resistant genes. Focusing on one candidate gene, we confirmed CDDP/5-FU resistance by comparing the IC50 between drug-resistant and wild-type cells. Furthermore, we investigated gene expression by a real-time polymerase chain reaction. Finally, we mediated the candidate gene level with small interfering RNA to confirm the resistance. Results: Thirty-nine candidate genes for CDDP/5-FU resistance were identified. Nineteen were for CDDP resistance and 27 were for 5-FU resistance. Seven genes, THUMP domain-containing protein 2 (THUMPD2), nuclear factor interleukin-3-regulated protein (NFIL3), tyrosine-protein kinase transmembrane receptor 2 (ROR2), C-X-C chemokine receptor type 4 (CXCR4), thrombospondin type-1 domain-containing protein 2 (THSD7B) alpha-parvin (PARVA) and TEA domain transcription factor 1 (TEAD1), were detected as candidate genes in both colonies. Regarding THUMPD2, its expression was downregulated and knocking down THUMPD2 suggested drug resistance in both drugs. Conclusions: Thirty-nine candidate genes were identified with transposons. The downregulation of THUMPD2 was suggested to play a role in multidrug resistance in in vitro esophageal squamous cell carcinoma.
KW - drug-resistance
KW - gastroenterology
KW - oncology
KW - tumor-therapy
UR - http://www.scopus.com/inward/record.url?scp=85076742848&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076742848&partnerID=8YFLogxK
U2 - 10.1002/jgm.3135
DO - 10.1002/jgm.3135
M3 - Article
C2 - 31656051
AN - SCOPUS:85076742848
SN - 1099-498X
VL - 21
JO - Journal of Gene Medicine
JF - Journal of Gene Medicine
IS - 12
M1 - e3135
ER -