Tissue-specific enhancer–gene maps from multimodal single-cell data identify causal disease alleles

Saori Sakaue, Kathryn Weinand, Shakson Isaac, Kushal K. Dey, Karthik Jagadeesh, Masahiro Kanai, Gerald F.M. Watts, Zhu Zhu, Michael B. Brenner, Andrew McDavid, Laura T. Donlin, Kevin Wei, Alkes L. Price, Soumya Raychaudhuri, Jennifer Albrecht, Jennifer H. Anolik, William Apruzzese, Nirmal Banda, Jennifer L. Barnas, Joan M. BathonAmi Ben-Artzi, Brendan F. Boyce, David L. Boyle, S. Louis Bridges, Vivian P. Bykerk, Debbie Campbell, Hayley L. Carr, Arnold Ceponis, Adam Chicoine, Andrew Cordle, Michelle Curtis, Kevin D. Deane, Edward DiCarlo, Patrick Dunn, Andrew Filer, Gary S. Firestein, Lindsy Forbess, Laura Geraldino-Pardilla, Susan M. Goodman, Ellen M. Gravallese, Peter K. Gregersen, Joel M. Guthridge, Maria Gutierrez-Arcelus, Siddarth Gurajala, V. Michael Holers, Diane Horowitz, Laura B. Hughes, Kazuyoshi Ishigaki, Lionel B. Ivashkiv, Judith A. James, Anna Helena Jonsson, Joyce B. Kang, Gregory Keras, Ilya Korsunsky, Amit Lakhanpal, James A. Lederer, Zhihan J. Li, Yuhong Li, Katherine P. Liao, Arthur M. Mandelin, Ian Mantel, Mark Maybury, Joseph Mears, Nida Meednu, Nghia Millard, Larry W. Moreland, Aparna Nathan, Alessandra Nerviani, Dana E. Orange, Harris Perlman, Costantino Pitzalis, Javier Rangel-Moreno, Deepak A. Rao, Karim Raza, Yakir Reshef, Christopher Ritchlin, Felice Rivellese, William H. Robinson, Laurie Rumker, Ilfita Sahbudin, Jennifer A. Seifert, Kamil Slowikowski, Melanie H. Smith, Darren Tabechian, Dagmar Scheel-Toellner, Paul J. Utz, Dana Weisenfeld, Michael H. Weisman, Qian Xiao, Fan Zhang

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Translating genome-wide association study (GWAS) loci into causal variants and genes requires accurate cell-type-specific enhancer–gene maps from disease-relevant tissues. Building enhancer–gene maps is essential but challenging with current experimental methods in primary human tissues. Here we developed a nonparametric statistical method, SCENT (single-cell enhancer target gene mapping), that models association between enhancer chromatin accessibility and gene expression in single-cell or nucleus multimodal RNA sequencing and ATAC sequencing data. We applied SCENT to 9 multimodal datasets including >120,000 single cells or nuclei and created 23 cell-type-specific enhancer–gene maps. These maps were highly enriched for causal variants in expression quantitative loci and GWAS for 1,143 diseases and traits. We identified likely causal genes for both common and rare diseases and linked somatic mutation hotspots to target genes. We demonstrate that application of SCENT to multimodal data from disease-relevant human tissue enables the scalable construction of accurate cell-type-specific enhancer–gene maps, essential for defining noncoding variant function.

本文言語English
ページ(範囲)615-626
ページ数12
ジャーナルNature genetics
56
4
DOI
出版ステータスPublished - 2024 4月
外部発表はい

ASJC Scopus subject areas

  • 遺伝学

フィンガープリント

「Tissue-specific enhancer–gene maps from multimodal single-cell data identify causal disease alleles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル