Trace of anomalous diffusion in a biased quenched trap model

Takuma Akimoto, Keiji Saito

研究成果: Article査読

10 被引用数 (Scopus)

抄録

Diffusion in a quenched heterogeneous environment in the presence of bias is considered analytically. The first-passage-time statistics can be applied to obtain the drift and the diffusion coefficient in periodic quenched environments. We show several transition points at which sample-to-sample fluctuations of the drifts or the diffusion coefficients remain large even when the system size becomes large, i.e., non-self-averaging. Moreover, we find that the disorder average of the diffusion coefficient diverges or becomes 0 when the corresponding annealed model generates superdiffusion or subdiffusion, respectively. This result implies that anomalous diffusion in an annealed model is traced by anomaly of the diffusion coefficients in the corresponding quenched model.

本文言語English
論文番号042133
ジャーナルPhysical Review E
101
4
DOI
出版ステータスPublished - 2020 4月

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Trace of anomalous diffusion in a biased quenched trap model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル