Training Large Kernel Convolutions with Resized Filters and Smaller Images

Shota Fukuzaki, Masaaki Ikehara

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Convolution is an essential component in neural networks for vision tasks. Convolutions on large receptive fields are more suitable than small kernel convolutions when aggregating global features in convolutional neural networks. However, large kernel convolutions require much computation and memory usage, slowing training neural networks. Then, we propose to train convolution weights with small images, resizing the convolution filters. While this idea shortens the time for training filters, simply applying this causes profound degradation. In this paper, we introduce four techniques that suppress degradation; weight scaling, removing Batch Normalization, defining a minimum resolution, and training with various-size images. In our experiment, we apply our proposals to train an image classification model based on RepLKNet-B on the image classification task of the CIFAR-100 dataset. Training with our proposals is approximately eight times faster than conventional training on the target spatial scale, keeping its accuracy.

本文言語English
ホスト出版物のタイトルGCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics
出版社Institute of Electrical and Electronics Engineers Inc.
ページ32-33
ページ数2
ISBN(電子版)9798350340181
DOI
出版ステータスPublished - 2023
イベント12th IEEE Global Conference on Consumer Electronics, GCCE 2023 - Nara, Japan
継続期間: 2023 10月 102023 10月 13

出版物シリーズ

名前GCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics

Conference

Conference12th IEEE Global Conference on Consumer Electronics, GCCE 2023
国/地域Japan
CityNara
Period23/10/1023/10/13

ASJC Scopus subject areas

  • 人工知能
  • エネルギー工学および電力技術
  • 電子工学および電気工学
  • 安全性、リスク、信頼性、品質管理
  • 器械工学
  • 原子分子物理学および光学

フィンガープリント

「Training Large Kernel Convolutions with Resized Filters and Smaller Images」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル