Trajectory Tracking Control with Estimated Driving Force for Tracked Vehicle Using Disturbance Observer and Machine Learning

Hiroaki Kuwahara, Toshiyuki Murakami

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

This paper proposes a tracking control method that suppresses slippage by using the driving force of a tracked vehicle. First, the velocity of the tracked vehicle including slippage is estimated using a disturbance observer and machine learning technique. This estimated velocity is utilized to design an observer that can estimate the driving force of the crawler. By distributing and controlling the driving force, tracking control with reduced slippage can be realized. The experimental results demonstrate the tracking performance of the proposed control system.

本文言語English
ホスト出版物のタイトルProceedings of 2021 IEEE 30th International Symposium on Industrial Electronics, ISIE 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728190235
DOI
出版ステータスPublished - 2021 6月 20
イベント30th IEEE International Symposium on Industrial Electronics, ISIE 2021 - Kyoto, Japan
継続期間: 2021 6月 202021 6月 23

出版物シリーズ

名前IEEE International Symposium on Industrial Electronics
2021-June

Conference

Conference30th IEEE International Symposium on Industrial Electronics, ISIE 2021
国/地域Japan
CityKyoto
Period21/6/2021/6/23

ASJC Scopus subject areas

  • 電子工学および電気工学
  • 制御およびシステム工学

フィンガープリント

「Trajectory Tracking Control with Estimated Driving Force for Tracked Vehicle Using Disturbance Observer and Machine Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル