TY - JOUR
T1 - Tunable visible photoluminescence from ZnO thin films through Mg-doping and annealing
AU - Fujihara, Shinobu
AU - Ogawa, Yusuke
AU - Kasai, Asayo
PY - 2004/7/27
Y1 - 2004/7/27
N2 - Visible photoluminescence (PL) from ZnO has been found to be tunable in a wide range from blue to green and orange through chemical doping and annealing. Mg-doped, (Al, Li)-doped, and undoped ZnO thin films were deposited on glass substrates by a metal-organic decomposition method at temperatures around 600 °C. The films were annealed under different atmospheres, including air, oxygen, nitrogen, and hydrogen/nitrogen. X-ray diffraction analysis and field-emission scanning electron microscope observations revealed that the films consisted of large ZnO grains 50-100 nm in size. When the Mg-doped ZnO films were annealed in nitrogen or hydrogen/nitrogen, unusual blue or bluish-white PL, respectively, was observed in response to an ultraviolet light excitation. We confirmed the band-gap broadening (approximately 0.25 eV) of the Mg-doped ZnO films as compared to that of the undoped films through observation of the absorption edge. The blue-related PL therefore appeared to be caused by energetic shifts of the valence band and/or the conduction band of ZnO. Films annealed in the oxidizing atmospheres, on the other hand, showed yellow/orange PL. We ascribed this PL to electronic transitions between shallow and deep defect levels. Yellow PL was also observed in the (Al, Li)-doped ZnO films, suggesting that shallow donor/acceptor levels due to extrinsic defects also contributed to the yellow PL.
AB - Visible photoluminescence (PL) from ZnO has been found to be tunable in a wide range from blue to green and orange through chemical doping and annealing. Mg-doped, (Al, Li)-doped, and undoped ZnO thin films were deposited on glass substrates by a metal-organic decomposition method at temperatures around 600 °C. The films were annealed under different atmospheres, including air, oxygen, nitrogen, and hydrogen/nitrogen. X-ray diffraction analysis and field-emission scanning electron microscope observations revealed that the films consisted of large ZnO grains 50-100 nm in size. When the Mg-doped ZnO films were annealed in nitrogen or hydrogen/nitrogen, unusual blue or bluish-white PL, respectively, was observed in response to an ultraviolet light excitation. We confirmed the band-gap broadening (approximately 0.25 eV) of the Mg-doped ZnO films as compared to that of the undoped films through observation of the absorption edge. The blue-related PL therefore appeared to be caused by energetic shifts of the valence band and/or the conduction band of ZnO. Films annealed in the oxidizing atmospheres, on the other hand, showed yellow/orange PL. We ascribed this PL to electronic transitions between shallow and deep defect levels. Yellow PL was also observed in the (Al, Li)-doped ZnO films, suggesting that shallow donor/acceptor levels due to extrinsic defects also contributed to the yellow PL.
UR - http://www.scopus.com/inward/record.url?scp=3242673312&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3242673312&partnerID=8YFLogxK
U2 - 10.1021/cm049599i
DO - 10.1021/cm049599i
M3 - Article
AN - SCOPUS:3242673312
SN - 0897-4756
VL - 16
SP - 2965
EP - 2968
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 15
ER -