Two-phase problem for two-dimensional water waves of finite depth

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We consider the two-phase problem for two-dimensional and irrotational motion of incompressible ideal fluids in the case that the fluids are separated into the lower and the upper parts by an almost horizontal interface and that there is an almost flat bottom below the lower fluid. It is proved that the Cauchy problem is well-posed, locally in time, in a Sobolev space of finite smoothness, if the surface tension is taken into account and the initial data are suitably close to the equilibrium rest state. The main part of the proof is the reduction of the problem to a quasi-linear system of integro-differential equations for the function defining the interface and the horizontal component of the velocity of the lower fluid on the interface.

本文言語English
ページ(範囲)791-821
ページ数31
ジャーナルMathematical Models and Methods in Applied Sciences
7
6
DOI
出版ステータスPublished - 1997 9月
外部発表はい

ASJC Scopus subject areas

  • モデリングとシミュレーション
  • 応用数学

フィンガープリント

「Two-phase problem for two-dimensional water waves of finite depth」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル