Visual Explanation Generation Based on Lambda Attention Branch Networks

Tsumugi Iida, Takumi Komatsu, Kanta Kaneda, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu Fujiyoshi, Komei Sugiura

研究成果: Conference contribution

抄録

Explanation generation for transformers enhances accountability for their predictions. However, there have been few studies on generating visual explanations for the transformers that use multidimensional context, such as LambdaNetworks. In this paper, we propose the Lambda Attention Branch Networks, which attend to important regions in detail and generate easily interpretable visual explanations. We also propose the Patch Insertion-Deletion score, an extension of the Insertion-Deletion score, as an effective evaluation metric for images with sparse important regions. Experimental results on two public datasets indicate that the proposed method successfully generates visual explanations.

本文言語English
ホスト出版物のタイトルComputer Vision – ACCV 2022 - 16th Asian Conference on Computer Vision, 2022, Proceedings
編集者Lei Wang, Juergen Gall, Tat-Jun Chin, Imari Sato, Rama Chellappa
出版社Springer Science and Business Media Deutschland GmbH
ページ475-490
ページ数16
ISBN(印刷版)9783031262838
DOI
出版ステータスPublished - 2023
イベント16th Asian Conference on Computer Vision, ACCV 2022 - Macao, China
継続期間: 2022 12月 42022 12月 8

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
13842 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference16th Asian Conference on Computer Vision, ACCV 2022
国/地域China
CityMacao
Period22/12/422/12/8

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Visual Explanation Generation Based on Lambda Attention Branch Networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル