Weak homogenization of anisotropic diffusion on pre-Sierpiński carpets

Martin T. Barlow, Kumiko Hattori, Tetsuya Hattori, Hiroshi Watanabe

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We study a kind of 'restoration of isotropy" on the pre-Sierpiński carpet. Let Rxn(r) and Ryn(r) be the effective resistances in the x and y directions, respectively, of the Sierpiński carpet at the nth stage of its construction, if it is made of anisotropic material whose anisotropy is parametrized by the ratio of resistances for a unit square: r = Ry0 / Rx0. We prove that isotropy is weakly restored asymptotically in the sense that for all sufficiently large n the ratio Ryn(r) / Rxn(r) is bounded by positive constants independent of r. The ratio decays exponentially fast when r ≫ 1. Furthermore, it is proved that the effective resistances asymptotically grow exponentially with an exponent equal to that found by Barlow and Bass for the isotropic case r = 1.

本文言語English
ページ(範囲)1-27
ページ数27
ジャーナルCommunications in Mathematical Physics
188
1
DOI
出版ステータスPublished - 1997 1月 1
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Weak homogenization of anisotropic diffusion on pre-Sierpiński carpets」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル