抄録
This paper presents a wide-range routing method for multiple rovers deployed for a lunar polar exploration mission. In the mission scenario considered in this paper, multiple exploration points are divided into several sets of points to be assigned to multiple rovers. Subsequently, routes between the exploration points are generated for each rover. This assignment and routing problems are well known as the multiple Traveling Salesman Problem (mTSP). The scenario aims to minimize two objective functions: the sum and standard deviation of operation time among the multiple rovers. This problem is then subject to the multi-objective mTSP (MOmTSP). Therefore, the proposed method is composed of a three-step procedure for solving the MOmTSP. First, the k-means algorithm divides an exploration area into several regions for the number of rovers. Subsequently, a routing algorithm with the space-filling curve and 2-opt algorithm determines the order of exploration points in each region. A local path planner then generates a feasible path between two exploration points. The simulation results using the proposed method with 80 cases are statistically analyzed. We confirm that the proposed method solves the multiple optimization problems by finding the routes that can equalize the rover's operation time and minimize their deviations.
本文言語 | English |
---|---|
ページ(範囲) | 1317-1331 |
ページ数 | 15 |
ジャーナル | Advanced Robotics |
巻 | 35 |
号 | 21-22 |
DOI | |
出版ステータス | Published - 2021 |
ASJC Scopus subject areas
- 制御およびシステム工学
- ソフトウェア
- 人間とコンピュータの相互作用
- ハードウェアとアーキテクチャ
- コンピュータ サイエンスの応用